解析几何

直线

  1. 直线的倾斜角 $0\leqslant\theta<\pi$
  2. 斜率 $$k=tan\theta=\frac{y_2-y_1}{x_2-x_1}$$ (当$l$垂直于$x$轴时, $\theta=\frac{\pi}{2}$, $k$不存在)

直线方程表示

  1. 点斜式 $y-y_0=k(x-x_0)$
  2. 斜截式 $y=kx+b$
  3. 两点式 $$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$
  4. 一般式 $ax+by+c=0$ (ab不同时为0) 其中一般式 $l$ 一个法向量为 $\vec{n}=(a,b)$
  5. 点法式 $a(x-x_0)+b(y-y_0)=0$

直线的位置关系

记两条直线:

$l_1: a_1x+b_1y+c_1z=0$ ($a_1$$b_1$不同时为0)

$l_2: a_2x+b_2y+c_2z=0$ ($a_2$$b_2$不同时为0)

  1. 重合: 存在 $\lambda$ 使得 $a_1=\lambda a_2$, $b_1=\lambda b_2$, $c_1=\lambda c_2$
  2. 平行: 存在 $\lambda$ 使得 $a_1=\lambda a_2$, $b_1=\lambda b_2$, $c_1\neq\lambda c_2$
  3. 相交: $a_1b_2\neq a_2b_1$

当 $a_2$ $b_2$ $c_2$ 不为 0 时

  1. 重合: $$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$$

  2. 平行: $$\frac{a_1}{a_2}=\frac{b_1}{b_2}\neq\frac{c_1}{c_2}$$

  3. 相交: $$\frac{a_1}{a_2}\neq\frac{b_1}{b_2}$$

  4. 垂直: $a_1a_2+b_1b_2=0$, $k_1k_2=-1$

直线夹角

记$l_1$$l_2$夹角为$\theta$

  1. $$cos\theta = \frac{|a_1a_2+b_1b_2|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}$$

    通过 $\vec{n_1}=(a_1,b_1), \vec{n_2}=(a_2,b_2)$ 的向量夹角得出直线夹角或其补角

  2. $$tan\theta = |\frac{k_1-k_2}{1+k_1k_2}|$$

    $$ tan\theta = tan(|\theta_1 - \theta_2|) = |\frac{tan\theta_1 - tan\theta_2}{1+tan\theta_1 tan\theta_2}| = |\frac{k_1-k_2}{1+k_1k_2}| $$

点到直线的距离

记 直线$l$: $ax+by+c=0$, 点$P(x_0,y_0)$

$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$

通过点到直线的垂足得出

当两直线平行时 $l_1: a_1x+b_1y+c_1z=0$ ($a_1$$b_1$不同时为0)

$l_2: a_2x+b_2y+c_2z=0$ ($a_2$$b_2$不同时为0)

两直线间距离

$d=\frac{|c_1-c_2|}{\sqrt{a^2+b^2}}$

直线解题技巧

  1. 当直线中含参数时, 直线有定点 例 含参数 $m$, $n$ 时 $l: mx+ny+m=0$ 将直线转化为 $m(x+1)+ny=0$

    $$\begin{matrix} x+1=0 \y=0 \end{matrix}$$ 可得到直线过定点 $(-1,0)$

  2. 共点直线系方程: 若直线 $l_1: A_1 x+B_1 y+C_1=0$ 与直线 $l_2: A_2 x+B_2 y+$ $C_2=0$ 相交于点 $S$, 则过这两条直线交点的直线系的方程是 $m\left(A_1 x+B_1 y+C_1\right)+$ $n\left(A_2 x+B_2 y+C_2\right)=0$ (其中 $m, n$ 是不同时为零的实数), 该直线系表示了所有 过点 $S$ 的直线.

上述题可以用联立方程组求出交点解决,不必一定使用此方法

圆的方程

  1. 标准方程 $(x-a)^2+(y-b)^2=r^2$ 其中圆心为 $(a,b)$, 半径为 $r$ 当圆与 $x$ 轴相切时, $|b|=r$ 当圆与 $y$ 轴相切时, $|a|=r$ 当圆与 $x$, $y$ 相切时, $|a|=|b|=r$
  2. 一般方程 $x^2+y^2+D x+E y+F=0$ 配方后得 $$\left(x+\frac{D}{2}\right)^2+\left(y+\frac{E}{2}\right)^2=\frac{D^2+E^2-4 F}{4}$$ 当 $D^2+E^2-4 F>0$ 时, 方程表示以 $\left(-\frac{D}{2},-\frac{E}{2}\right)$ 为圆心, $\frac{\sqrt{D^2+E^2-4 F}}{2}$ 为半径的圆 当 $D^2+E^2-4 F=0$ 时, 方程表示一个点 $\left(-\frac{D}{2},-\frac{E}{2}\right)$ 当 $D^2+E^2-4 F<0$ 时, 方程无图像

点与圆的位置关系

为点到圆心的位置关系与半径 $r$ 相比较 C $(a, b)$ 为圆心, $r$ 为半径, $P(x, y)$ 为点 $d=\sqrt{(x-a)^2+(y-b)^2}$ $d<r$ 在圆内 $d=r$ 在圆上 $d>r$ 在圆外

直线与圆的位置关系

位置关系 公共点情况 判別方法1 判別方法2
相离 没有公共点 $d>r$ $\Delta<0$
相切 唯一公法共 $d=r$ $\Delta=0$
相交 两个不同的公共点 $d<r$ $\Delta>0$
  1. 上表中, 直线 $l: A x+B y+C=0\left(A^2+B^2 \neq 0\right)$ 和圆 $C: (x-a)^2+$ $(y-b)^2=r^2$ $$d=\frac{|A a+B b+C|}{\sqrt{A^2+B^2}}$$ ( 圆心 $C$ 到直线 $l$ 的距离 )

  2. 当直线 $l$ 与坐标轴不垂直时, 将直线 $l$ 和圆 $C$ 的方程联立消去 $y$ 后得 到一个关于 $x$ 的一元二次方程, 其判别式记为 $\Delta$. 当直线与 $x$ 轴垂直时, 消去 $x$; 当直线与 $y$ 轴垂直时, 消去 $y$

圆与圆的位置关系

方法1

$\begin{aligned} & C_1:\left(x-a_1\right)^2+\left(y-b_1\right)^2=r_1^2 \ & C_2:\left(x-a_2\right)^2+\left(y-b_2\right)^2=r_2^2\end{aligned}$ 圆心距 $d=\sqrt{\left(a_1-a_2\right)^2+\left(b_1-b_2\right)^2}$

当 $d<\left|r_1-r_2\right|$ 时, 两圆内含; 当 $d=\left|r_1-r_2\right|$ 时,两圆内切; 当 $\left|r_1-r_2\right|<d<r_1+r_2$ 时, 两圆相交; 当 $d=r_1+r_2$ 时, 两圆外切; 当 $d>r_1+r_2$ 时, 两圆外离.

方法2

$\begin{aligned} & C_1: x^2+y^2+D_1 x+E_1 y+F_1=0 \ & C_2: x^2+y^2+D_2 x+E_2 y+F_2=0\end{aligned}$ 联立方程组 {$\begin{array}{l}x^2+y^2+D_1 x+E_1 y+F_1=0 \\ x^2+y^2+D_2 x+E_2 y+F_2=0\end{array}$ 得 $\left(D_1-D_2\right) x+\left(E_1-E_2\right) y+\left(F_1-F_2\right)=0$ 两组解, 相交 一组解, 内切或外切 若无解, 内含或外离

圆解题技巧

  1. 弦长公式 (适用于直线与任意曲线) 直线 $l$ 与 曲线 $c$ 交于 $A$ 和 $B$ {$\begin{matrix} l: y=k x + b \\ c: a x^2 + b y^2 + c x + d y + e = 0 \end{matrix}$ 带入消 $y$ 得 $ a x^2 + b x + c = 0$ 由一元二次方程计算得到 $\Delta$ 弦长 $$AB = \sqrt{1+k^2}|x_1-x_2| = \sqrt{1+k^2}\frac{\sqrt{\Delta}}{|a|}$$

椭圆 && 双曲线

名称 椭圆 双曲线
定义 到两定点 $F_1, F_2$ 的距离和为常数 $2a$ ( $2a> \lvert F_1F_2 \rvert $ ) 到两定点 $F_1, F_2$ 的距离差的绝对值为常数 $2a$ ( $0<2a< \lvert F_1F_2 \rvert $ )
$PF_1 + PF_2 = 2a$ $\lvert PF_1 - PF_2 \rvert = 2a$
当 $2 a>2 c$ 时, 轨迹是椭圆 当 $2 a<2 c$ 时, 轨迹是双曲线
当 $2 a=2 c$ 时, 轨迹是线段$ \lvert F_1F_2 \rvert $ 当 $2 a=2 c$ 时, 轨迹是两条射线
当 $2 a<2 c$ 时, 轨迹不存在 当 $2 a>2 c$ 时, 轨迹不存在
标准方程 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ( 焦点在 $x$ 轴上 ) $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ ( 焦点在 $x$ 轴上 )
标准方程 $\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$ ( 焦点在 $y$ 轴上 ) $\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$ ( 焦点在 $y$ 轴上 )
焦点在哪 分母的大小判断 项的正负判断
a, b, c 关系 $a^2=b^2 + c^2$ $c^2=a^2+b^2$
长轴 2a 短轴 2b 焦距2c 实轴 2a 虚轴 2b 焦距 2c
取值() $-a \leqslant x \leqslant a $ ( 焦点x轴上 ) $x \leqslant -a$ 或 $x\geqslant a $ ( 焦点x轴上 )
范围 $-b \leqslant y \leqslant b $ $y \in R$
对称性 关于 $x$, $y$ 轴, 原点对称 关于 $x$, $y$ 轴, 原点对称
顶点 $(\pm a, 0)$ $(0, \pm b)$ ( 焦点x轴上 ) $(\pm a, 0)$ ( 焦点x轴上 )
离心率 $e=\frac{c}{a}\in(0,1)$ $e=\frac{c}{a}=\sqrt{1+\frac{b^2}{a^2}} \in(1,+\infty)$
$e\to 1$扁, $ e\to 0$ 圆 $e\to 1$开口小(扁), $ e\to +\infty$ 开口大
渐近线(双曲线) 把 "1" 换为 "0" 即 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=0$ (焦点x轴上)

注意事项 a, b, c > 0

双曲线与直线位置关系

判断点在椭圆/双曲线内外

椭圆&&双曲线解题技巧

  1. 弦长公式 同圆
  2. 焦点三角形
椭圆 双曲线
$PF_1 \cdot PF_2 = \frac{2b^2}{1+cos\theta}$ $PF_1 \cdot PF_2 = \frac{2b^2}{1-cos\theta}$
$cos\theta = \frac{2b^2}{PF_1 \cdot PF_2} - 1$ $cos\theta = 1 - \frac{2b^2}{PF_1 \cdot PF_2}$
$S_\triangle F_1PF_2 = b^2tan\frac{\theta}{2}$ $S_\triangle F_1PF_2 = b^2cot\frac{\theta}{2}$

抛物线

标签: 技巧 , 数学 ,

共有30条评论

  1. Hello i am kavin, its my first occasion to commenting anywhere, when i read this piece of writing i thought i could also create comment due to this brilliant piece of writing.

  2. Hey! Someone in my Facebook group shared this site with us so I came to look it over. I'm definitely loving the information. I'm bookmarking and will be tweeting this to my followers! Exceptional blog and wonderful style and design.

  3. This information is priceless. Where can I find out more?

  4. I'm truly enjoying the design and layout of your blog. It's a very easy on the eyes which makes it much more pleasant for me to come here and visit more often. Did you hire out a designer to create your theme? Outstanding work!

  5. I visited many websites but the audio quality for audio songs present at this web page is in fact fabulous.

  6. wonderful points altogether, you simply won a new reader. What might you suggest about your submit that you made a few days in the past? Any positive?

  7. Today, I went to the beachfront with my kids. I found a sea shell and gave it to my 4 year old daughter and said "You can hear the ocean if you put this to your ear." She placed the shell to her ear and screamed. There was a hermit crab inside and it pinched her ear. She never wants to go back! LoL I know this is totally off topic but I had to tell someone!

  8. Admiring the commitment you put into your website and in depth information you provide. It's nice to come across a blog every once in a while that isn't the same outdated rehashed information. Excellent read! I've bookmarked your site and I'm adding your RSS feeds to my Google account.

  9. I know this if off topic but I'm looking into starting my own weblog and was wondering what all is required to get setup? I'm assuming having a blog like yours would cost a pretty penny? I'm not very internet smart so I'm not 100% certain. Any suggestions or advice would be greatly appreciated. Many thanks

  10. Hello, i think that i noticed you visited my site so i came to go back the favor?.I am trying to to find things to enhance my site!I assume its adequate to use some of your ideas!!

  11. I'm curious to find out what blog platform you happen to be utilizing? I'm experiencing some minor security problems with my latest site and I'd like to find something more safeguarded. Do you have any suggestions?

  12. I believe everything posted made a lot of sense. However, think about this, what if you added a little content? I mean, I don't want to tell you how to run your website, but what if you added something that grabbed people's attention? I mean 解析几何 is a little plain. You should look at Yahoo's home page and note how they create news titles to get viewers to open the links. You might add a video or a related pic or two to get readers excited about what you've written. In my opinion, it might make your website a little livelier.

  13. I do agree with all of the concepts you have introduced for your post. They are very convincing and can certainly work. Still, the posts are too quick for newbies. May just you please extend them a little from subsequent time? Thanks for the post.

  14. Hi there, I enjoy reading all of your article post. I like to write a little comment to support you.

  15. When someone writes an piece of writing he/she maintains the idea of a user in his/her brain that how a user can understand it. Thus that's why this piece of writing is great. Thanks!

  16. Hi it's me, I am also visiting this web page daily, this site is in fact pleasant and the visitors are genuinely sharing good thoughts.

  17. I do consider all the ideas you've introduced in your post. They are very convincing and will certainly work. Nonetheless, the posts are very quick for newbies. May you please lengthen them a bit from next time? Thank you for the post.

  18. Paragraph writing is also a fun, if you be acquainted with then you can write if not it is complex to write.

  19. each time i used to read smaller content that as well clear their motive, and that is also happening with this piece of writing which I am reading here.

  20. After checking out a few of the blog articles on your site, I really like your way of writing a blog. I book marked it to my bookmark website list and will be checking back in the near future. Take a look at my web site as well and tell me what you think.

  21. whoah this weblog is excellent i love studying your posts. Keep up the good work! You already know, many individuals are hunting round for this info, you can aid them greatly.

  22. Great web site you've got here.. It's hard to find excellent writing like yours nowadays. I honestly appreciate individuals like you! Take care!!

  23. It's amazing designed for me to have a site, which is useful in support of my know-how. thanks admin

  24. I am curious to find out what blog system you happen to be working with? I'm having some small security issues with my latest site and I'd like to find something more safeguarded. Do you have any suggestions?

  25. Terrific work! That is the type of info that should be shared across the net. Shame on Google for no longer positioning this post upper! Come on over and talk over with my website . Thank you =)

  26. Ahaa, its pleasant discussion about this post here at this blog, I have read all that, so at this time me also commenting here.

  27. continuously i used to read smaller posts which also clear their motive, and that is also happening with this paragraph which I am reading at this place.

  28. I'm truly enjoying the design and layout of your website. It's a very easy on the eyes which makes it much more pleasant for me to come here and visit more often. Did you hire out a developer to create your theme? Exceptional work!

  29. Hi there it's me, I am also visiting this web page on a regular basis, this web page is actually good and the visitors are truly sharing pleasant thoughts.

  30. Hello there! I know this is kinda off topic but I was wondering which blog platform are you using for this website? I'm getting fed up of Wordpress because I've had problems with hackers and I'm looking at alternatives for another platform. I would be great if you could point me in the direction of a good platform.

添加新评论

1